Globally convergent limited memory bundle method for large-scale nonsmooth optimization

نویسندگان

  • Napsu Haarala
  • Kaisa Miettinen
  • Marko M. Mäkelä
چکیده

Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of thousands of variables. In the paper [Haarala, Miettinen, Mäkelä, Optimization Methods and Software, 19, (2004), pp. 673–692] we have described an efficient method for large-scale nonsmooth optimization. In this paper, we introduce a new variant of this method and prove its global convergence for locally Lipschitz continuous objective functions, which are not necessarily differentiable or convex. In addition, we give some encouraging results from numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited Memory Bundle Method for Large Bound Constrained Nonsmooth Optimization

1. Abstract Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the report [Haarala, Mäkelä, 2006] we have described an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization...

متن کامل

Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis

Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the paper [Karmitsa, Mäkelä, 2009] we described an efficient limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although this method wor...

متن کامل

LMBM — FORTRAN Subroutines for Large-Scale Nonsmooth Minimization: User’s Manual

LMBM is a limited memory bundle method for large-scale nonsmooth, possibly nonconvex, optimization. It is intended for problems that are difficult or even impossible to solve with classical gradient-based optimization methods due to nonsmoothness and for problems that can not be solved efficiently with standard nonsmooth optimization methods (like proximal bundle and bundle trust methods) due t...

متن کامل

Limited memory interior point bundle method for large inequality constrained nonsmooth minimization

Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...

متن کامل

New Quasi-Newton Optimization Methods for Machine Learning

This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2007